Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(24): 11778-11784, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38054731

RESUMO

Twisting bilayers of transition metal dichalcogenides gives rise to a moiré potential resulting in flat bands with localized wave functions and enhanced correlation effects. In this work, scanning tunneling microscopy is used to image a WS2 bilayer twisted approximately 3° off the antiparallel alignment. Scanning tunneling spectroscopy reveals localized states in the vicinity of the valence band onset, which is observed to occur first in regions with S-on-S Bernal stacking. In contrast, density functional theory calculations on twisted bilayers that have been relaxed in vacuum predict the highest-lying flat valence band to be localized in regions of AA' stacking. However, agreement with experiment is recovered when the calculations are performed on bilayers in which the atomic displacements from the unrelaxed positions have been reduced, reflecting the influence of the substrate and finite temperature. This demonstrates the delicate interplay of atomic relaxations and the electronic structure of twisted bilayer materials.

2.
ACS Nano ; 17(16): 15883-15892, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37556765

RESUMO

The layered transition-metal dichalcogenide material 1T-TaS2 possesses successive phase transitions upon cooling, resulting in strong electron-electron correlation effects and the formation of charge density waves (CDWs). Recently, a dimerized double-layer stacking configuration was shown to form a Peierls-like instability in the electronic structure. To date, no direct evidence for this double-layer stacking configuration using optical techniques has been reported, in particular through Raman spectroscopy. Here, we employ a multiple excitation and polarized Raman spectroscopy to resolve the behavior of phonons and electron-phonon interactions in the commensurate CDW lattice phase of dimerized 1T-TaS2. We observe a distinct behavior from what is predicted for a single layer and probe a richer number of phonon modes that are compatible with the formation of double-layer units (layer dimerization). The multiple-excitation results show a selective coupling of each Raman-active phonon with specific electronic transitions hidden in the optical spectra of 1T-TaS2, suggesting that selectivity in the electron-phonon coupling must also play a role in the CDW order of 1T-TaS2.

3.
Adv Mater ; 35(38): e2207816, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37377064

RESUMO

Semiconducting ferroelectric materials with low energy polarization switching offer a platform for next-generation electronics such as ferroelectric field-effect transistors. Recently discovered interfacial ferroelectricity in bilayers of transition metal dichalcogenide films provides an opportunity to combine the potential of semiconducting ferroelectrics with the design flexibility of 2D material devices. Here, local control of ferroelectric domains in a marginally twisted WS2 bilayer is demonstrated with a scanning tunneling microscope at room temperature, and their observed reversible evolution is understood using a string-like model of the domain wall network (DWN). Two characteristic regimes of DWN evolution are identified: (i) elastic bending of partial screw dislocations separating smaller domains with twin stackings due to mutual sliding of monolayers at domain boundaries and (ii) merging of primary domain walls into perfect screw dislocations, which become the seeds for the recovery of the initial domain structure upon reversing electric field. These results open the possibility to achieve full control over atomically thin semiconducting ferroelectric domains using local electric fields, which is a critical step towards their technological use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...